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Equating the variation of the functional II to zero, we obtain the equation andinitial 
condition for determining u, (1, z) 

pl"l,,--~&= (W-~@0=&,,! +Qpzoul+ir) (11) 
"11 (0. I) = 'Itc kp + PO) I,,W 

to which we should add the initial condition V, (0, 2) = 0 following from the constraint (6). 
In addition to producing the function V, (I, 2) (10) , Eq.(ll) yields the solution of the problem 
in question. We note that the approach adopted here does not give rise to ill-posed problems. 

Relations (10) and (11) can be combined within the limits of accuracy used, into a single 
equation in terms of the function "(I, t) sought 

po",,--v,,- (W1%(Pp +EJ Vt*, = 0, 0 (0,~) = f (t), 
u, (OVZ) = 8 (I) +'iz (*0+PP)1*s(2) 

It has the form of an equation of motion of a one-dimensional viscoelastic medium. Its 
solution, with the above initial conditions , yields an asymptotically exact value for the 
averaged solution of,the initial equation (1) when f~P(~~+-e,,). 

When the values of time t are nearly zero, the averaged solution has been shown to have 
the character of a boundary layer, and more complicated equations are needed for its determina- 
tion, obtained by varying the functional (8). This explains the appearance of the last term 
in the second initial condition, which is not present in the exact formulation by virtue of 
relation (2) and of the definition of the averaged solution. The term in question describes 
the effect of the temporary boundary layer on the behaviour of the solution at finite times. 

The author thanks V.L. Berdichevskii for his interest and for discussing the results. 
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THE BUBNOV-GALERKIN METHOD IN THE NON-LINEAR THEORY OF HOLLOW, 
FLEXIBLE MULTILAYER ORTHOTROPIC SHELLS* 

V.F. KIRICHENKO, V.A. KRYS'KO and N.S. SUROVA 

The existence of solutions of a strongly non-linear system of differential 
equations describing, in the framework of the kinematic Timoshenko model 
/l/ adopted for the whole packet in toto /2/, the behaviour of a flexible, 
multilayer shell whose very layer is made of an inhomogeneous orthotropic 
material, is proved. To obtain an approximate solution of the problem 
in question, a procedure is proposed and justified, using the Bubnov- 
Galerkin (BG) method based on constructing an auxiliary quasilinear 
system of equations. A similar approach makes it possible to extend the 
method /3-6/of studying the convergence of the BG method to strongly 
non-linear systems of elliptic type equations, and to achieve the con- 
vergence of the sequence of approximate solutions to the exact solution 

in a space of any prescribed degree of smoothness, without imposing 
additional constraints on the initial data of the problem. 
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We formulate the initial problem as follows. It is required to find, in the region 

PC E, (E, is an Euclidean space and (z,u) is a point in EJ with boundary dt2. satisfying the 
coditions which guarantee the application of the Sobolev inclusion theorems /7/, a solution 
of the system of differential equations with boundary conditions 

where 

and A,,@, y) are functions of rigidity, defined as follows: 
in the caseofan odd number of layers of constant thickness symmetrically distributed 

about the middle surface I= 0 /2/ we have 

"I-' 

nb 
‘4,; (I, 11) = GG' j(r) dz $ 2 i G19 1 / (0) d: (2) 

-hm-1 1-1 %+I 

in the case of an arbitrary number of layers of constant thickness /2/ we have 

and in the case of layers of variable thickness /2/ we have (3) with 6,= 6,(x. y), A=O; ).=I, 2. 
We use the following notation: U(Z, y), L.(I, y),u’(r.y) are the displacements of the point of 

the middle surface along the lines r,y,z, respectively, yx(z, Y).Y" (I, Y) are the angles of 
rotation of the normal in the planes ZZ, yz> respectively, kx (I, v), k, (I, y) are the curvatures of 
the middle plane, P,(z, y), Py(t, y) are the longitudinal load intensities, q(z,y) is the trans- 
verse load intensity, T,, Tt. S are the tangential forces, M,,,M,,,M,, are the bending and 
torsional moments, Q1,Q1 are the transverse forces, sll, Q,. E,* are the tensile and shear 
deformations of the middle surface, c13. tz3 are the transverse shear deformations, %I %z, %P 
are the bending deformations, Gzj(I.y1, Kij(r,y),D,j(r,y) are known functions of the rigidity, /2/, 
G,, (13 Y), (;Ps (rl Y) are the shear moduli in the rz,yr planes respectively independent of the 
variable z,i(z) is the distribution function of tangential stresses over the shell thickness 
and /l/, h,,6,,A are constaTits in the formulas (2), (3! characterizing the thickness and 
position of each layer in the shell /2/. The functions Cij, Kij, D,), A+j satisfy tne conditions 

0 < a1 G CQ < B1, 0 < ap < A,, d B,, 0 < aI f Ki, < h. 0 < a, f Dit d B4 (4) 
by definition. 

We shall use the following notation for the Sobolev spaces: 

is a scalar product in JY,"(n)a?&((R),I' Is, is the norm in the Hilbert space M, inparticular 
is the norm in W,or(n), 1. Im is the norm in Wtm 62). We introduce in HI and H, as follows: 

I I& = I Id -L I > lo? + I . IOI’ + I Id + I . 101’1 
I I’& = I Id - 1 . lOI2 T I . I? A I . Id + 1 lOI8 
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the generalized solution of problem (1). 
We shall consider, together with cl), the following auxiliary problem: 

L, (u) = P,. L, (i.) = P,, L, (u.) + rA% = y, L, (TX) = 0, Lb (V”) = 0 (6) 

“=VzU:=~X=l(y=O( i-v au 
AC--- d,l =o on 

P 
an 

where b,'+n is a derviative along the upper normal, p is the radius of curvature of the contour 
dR,r is a positive constant and 3 is the Laplace operator. 

We shall call the generalized solution of problem (6) the vector 
satisfying the integral identity 

up = lU,, L'(, U'C' Y,,, YYr) 

Then: l! fcr any E > 0 there exists at least one vectcr wpc = (urC, 1~0, uEO~_o, yy,') satisfy- 
ing the identity (7); 21 the approximate sc,lution of problem (6) can be found with the aid cf 
the BG met-hod inthe form (the summation over repeated indices is carried out from 1 to nj 

where lz,, (z. ~1). (xi (1. ~1; are the basis systems in 11‘22(:q ,? 1i.2'l(Ri and Ii.zOl(R) , respectively. Also 
0 rcli - uc . L.~" - I'~ sJ!~ - ;.;, ;$ - *b'Pr weakly in Ii 2 -1 (Cj) li.cL U‘ c weakly in 1i‘22 (0) ,-I 1i.,c1 (Ql and strongly in 

ll-:P' ii!). 

Proof. We will obtain the approximate sclution of problem (6) .using the BG procedure, 
determining the coefficients in (9) from the following system of equations: 

9’1, Id!?. i.;,k,l.p=l,? I.... n 

The solvability of the system follows from the lemma "on the acute angle" /8/. Indeed, 
let us introduce, as in /E,/, the mapping P (c) E (L, (c), L2 (c), L,(C), L,(C), L,(C)): R-R where R = IC”15. 

C'Z is a Banach space of continuous functions of n variables. The continuity of the mapping 

Lj (C) (i = I, 2.. ., 5) is obvious (the continuity of the non-linear terms follows from the com- 
pactnessofthe inclusion M;'(R) into W,z(R). We shall show that the "acute angle" condition 
holds. To do this we multiply every equation of system (10: by the corresponding factor 



a,, bj. CAM 4, cp and sum over i.j, k,I,p from 1 to n 
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(11) 

where e,,“, hnn, eLSn, x~~~,x+,~, x12n are obtained from eI1. cc*, e,,,%,%, xl1 by replacing the vector 0= 

(u, L', ZS,~~,Y~) by the vector eln = (IQ", Q", w,", ylenV Ye,"). 
'The definition of the coefficients Cil,Dit /2/ and condition (6) together imply that Cj,- 

C,, > aJ2, D,, - D,, > a,/2 (i. = 1, 2). Using the Cauchy inequality with SE* /7/ and the Cauchy- 
Bunyakovskii inequality /7/ for the last term in (ll), we have 

Thus when 1 Cl is sufficiently large and the condition of Theorem 1 is taken into account, 
the acute angle condition holds (P(C). C)>O. This allows us to assert that system (lo! has a 
sclution, and enables us to write the following a priori estimates for the set of approximate 

1 *& lOI r: c’ , I p;, lo1 < cz, c’ = cowt > 0 

Using the estimates (13; and. the theorem on the compactness of the 
Uzz(Rj, we carry out in the well-known manner /4, 51 the passage to the 
and this completes the proof of the theorem. 

The theorem which follows shows in what sense the sciution of (6) 
of (1). 

inclusion Ual (Qj into 
limit from n in (lo?, 

approximates the sclution 

Thecrem 2. Let the conditions of Theorem ? hold. Then, as E -. 0, a subsequence {UC. I'(. 

U‘S, l‘,r. 1',,F? can be found which converges tc the soi,ution m: = ,L., L.C. u=. 7,,:. q;:') of problem (1: in 
the folioKing sense: ut - 2, I.~ - I,‘, yxi - :‘;‘. ydr -- ypc weakly in UP" (R). u'~ - uc weakly in . IT‘,? InI ‘- 
H‘,:l rQ) and ti.F - ~1.' strongly in U', ’ tR1. 

Proof. We ncte that we can obtain from (13) estimates for the approximate solutions of 
problem (6; by passing to the limit in n. The presence of these estimates enables us to 
choose a subsequence (we: = (liF. I(. u'~.;‘,... r!,,: weakly convergent in H,. This justifies, togetheL 
with the Scbclev inclllsion theorems, the Fossibility of a passage tc the limit as $-_(I in 
the integral identit} (51 after the preliminary closure of the set {x1; E H, on the nox of H, 

Notes. 
o 
1 . Condition ;e) will always hold in Theorem 1 for the layerscf constant thickness, 

whether they are symmetrically or arbrtrarriy distributed, prcvided that the coordinate surface 
/2/ is chosen appropriately, and in the case of iayers of variable thickness conditicn (8) 
holds, in particuiar, when the layers are distributed symrmetrically about the coordinate 
surface : = 0. 

20. We can consider, as the auxiliary problem (6)) the problem in which the biha_rmonic 
operator is replaced by an arbitrary, positive definite operator T with natzal boundary 
conditions, whose energy spaceisirrbedded compactly in Uzz(R)^ M;:l(R). We note that the 
freedom in the choice o f the cperatcr T enables us "to construct", in a known sense, the 
properties of the resulting aigebraic system in the BG method in crder to increase the com- 
putational efficiency of the algorithm used. 

The introduction of the auxiliary prcblem (6) makes is possible to obtain strong con- 
vergence of some sequence of approximate soluticns I(.~" to the exact solution co, which is 

important from the point of view o f the practical realization of the algorithm. A similar 
result can be obtained also for the other functions sought u, ",fx.yu, p rovided that we complement 
the expressions L,(u), L, (4. L,(y,), L, (yv) in systems (6) with terms of the form qT,u, ~,T,L ~nT,y,, 
e,T,~s , respectively, where F~> 0 (I = 1.2, 3, 4). T, are positive definite operators with natural 
boundary conditions whose energy space is imbedded compactly in US2 (Q) fi JI‘," (0). Clearly, by 
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choosing the operators T, Ti appropriately, we can obtain practically any degree of convergence 
of the subsequence of approximate solutions to the exact solution without imposing any additional 
constraintsonthe initial data of problem (1). 

30 . A proof analogous to the one given above holds for other boundary vlaues (e.g. when 
the character of the boundary condition varies along the contour /9/j, naturally, when the 
boundary conditions for the Timoshenko-type model are transferred appropriately. 
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