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Equating the variation of the functional J,(3;) to zero, we obtain the equation andinitial
condition for determining (4, 2)

Pobyyy — Ay, = (26)7 (Po gy + Go¥,Vosgr) (11)
gy (0, 2) = Yee (¢, + ) 1. (2)

to which we should add the initial condition v (0,2)=0 following from the constraint (6).

In addition to producing the function v, (1, z) (10), Eq.{(1l) yields the solution of the problem

in gquestion. We note that the approach adopted here does not give rise to ill-posed problems.
Relations (10) and (11) can be combined within the limits of accuracy used, into a single

equation in terms of the function v(z, f) sought

Py — v,y — (2¢) 1 ayp (sp e Uy = 0, v(0,x)=1(2),
v, (0,2) = g (2) + Yt (¢, + €5} [ (2)

It has the form of an equation of motion of a one-dimensional viscoelastic medium. 1Its
solution, with the above initial conditions, yields an asymptotically exact value for the
averaged solution of, the initial equation (1) when 3¢ (e + &)

when the values of time t are nearly zero, the averaged solution has been shown to have
the character of a boundary layer, and more complicated equations are needed for its determina-
tion, obtained by varying the functional (8). This explains the appearance of the last term
in the second initial condition, which is not present in the exact formulation by virtue of
relation (2) and of the definition of the averaged solution. The term in gquestion describes
the effect of the temporary boundary layer on the behaviour of the solution at finite times.

The author thanks V.L. Berdichevskii for his interest and for discussing the results.
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THE BUBNOV-GALERKIN METHOD IN THE NON-LINEAR THEORY*OF HOLLOW,
FLEXIBLE MULTILAYER ORTHOTROPIC SHELLS

V.F. KIRICHENKO, V.A. KRYS'KO and N.S. SUROVA

The existence of solutions of a strongly non-linear system of differential
equations describing, in the framework of the kinematic Timoshenko model
/1/ adopted for the whole packet in toto /2/, the behaviour of a flexible,
multilayer shell whose very layer is made of an inhomogeneous orthotropic
material, is proved. To obtain an approximate sclution of the problem

in question, a procedure is proposed and justified, using the Bubnov-
Galerkin (BG) method based on constructing an auxiliary quasilinear
system of equations. A similar approach makes it possible to extend the
method /3—6/ of studying the convergence of the BG method to strongly
non-linear systems of elliptic type equations, and to achieve the con-
vergence of the sequence of approximate solutions to the exact solution
in a space of any prescribed degree of smoothness, without imposing
additional constraints on the initial data of the problem.

*prikl.Matem.Mekhan.,49,4,700-704,1985
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We formulate the initial problem as follows. It is required to find, in the region
Q CE, (B, is an Euclidean space and (z,3) is a point in E) with boundary aQ, satisfying the
coditions which guarantee the application of the Sobolev inclusion theorems /7/, a solution
of the system of differential equations with boundary conditions

L@ == (1) =5 ()P, =0 ®
L) == (T =55 () =P, =0

L) = — kT =k = @) =5 (@0 — 55 (11 5 ) —
)R R e

Li(3) = =5 (M) = 5 (M) + Q= 0

[4 [
Ly () = — 57 (Max) — 57 (Mss) + Q2 = 0

u=v=w=yz=yy=0 on 49
where
T, =Crem+Cotnt K wu+ K e 5= Cutaz + Koz

M, =K en 4K em+ Dpun + D, %ees Mg = Kyf12 + Dogran
0, =45y 2=12

du 1 dw \2 v 1 dw
‘“=T:"‘kx'”+T(Tz" v =gy "“+z( )

du N av ouw  dw _ (23 _ e
=gt et Ty =Yt m=v, T
o ayy 8y, 6yy

1= "5 ‘/ez=a_y, ’41:=W rre

and 4,, (z, ) are functions of rigidity, defined as follows:
in the case of an odd number of layers cf constant thickness symmetrically distributed
about the middle surface z=0 /2/ we have

ml
A (2,1 S d.-—2ZG S fiz)d @)

—hm-1 =1 Resy

in the case of an arbitrary number of layers of constant thickness /2/ we have

m+n ﬁs—A
A= 6  1@e @)
=1 6‘,.;—-3

and in the case of layers of variable thickness /2/ we have (3) with &, = 6. (zr, y), A=0; 2 =1, 2.
We use the following notation: u(sz, y), v(z, ), v (z, y) are the displacements of the pcint of
the middle surface along the lines z,y,z, respectively, vx(z,y), vy (z,y) are the angles of
rotation of the normal in the planes ziz, yz, respectively, ks (z, )k (z,y) are the curvatures of
the middle plane, P;(z, y), Py(z, y) are the longitudinal load intensities, g¢(z,y) is the trans-
verse load intensity, T,, 7,, § are the tangential forces, M, My, M, are the bending and
torsional moments, @, ¢, are the transverse forces, e, &, &, are the tensile and shear
deformations of the middle surface, & ¢» are the transverse shear deformations, %y, %, %5
are the bending deformations, Gj;(s.y), Kij(z, ), Dij(z,y) are known functions of the rigidity, /2/,
Gys (z, y), Gp3 (2, y) are the shear moduli in the sz, yz planes respectively independent of the
variable z,f(:) is the distribution function cf tangential stresses over the shell thickness
and /1/, b, 68,8 are constants in the formulas (2), (3) characterizing the thickness and
positicn of each layer ir the shell /2/. The functions Cj; Kij D, 4i; satisfy the conditions

0o <G <P 0<a, A< Bz;0<as<ﬂu ﬁav0<ac<Dtj Bs (4)
by definition.
We shall use the fcllowing notation for the Scbolev spaces:

Q) ={ulDdue L (Q), Vala| < m), W,°' (R) =
ulue WP (@, u=0 on o0}, H, = [W,p
= (W1 X Wt () Wyt X [Wyet?

(-»+) is a scalar product in W,° () 2L, (Q),| |y is the norm in the Hilbert space M, in particular
l‘la is the norm in Wy (Q),]:|n is the norm in W,” (). We introduce in H; and H, as follows:
A R PR RE L R LR S I Ll R
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We shall call the vector = (u, v, ¥, ¥x, ¥y) € H; satisfying the integral identities

(L (u), %)-(Txy"“) ( , ‘:9?)_(?:'%)20 (5
(s 2

o
(La ), 90 = (7, a“;’) s A

(s ), ) = (T1, = k,9) = (s, ~ k90 + {4 (3, + 52-), 32 ) -
(Azab'y'i'%:—)v?;‘)'f‘(rh ?;: a?)"l"(h;%%) T

T (s F )+ (s R - @m=o

(La (T_,)~¢a)5(Mu‘ 39 (sz. +(A11(1‘,+%£‘>1¢t)=0

ow
\Ls(\‘y)~¢s)—(Mzz 5y )+‘ 125 az)+(An(?y+—aI;‘).(Ps)=0.
Ve Hy, ¢ = (¢1 P2 G, §oy §s)
the generalized solution of problem (1).
We shall consider, together with (1), the following auxiliary problem:

Ly(u) = Py, Ly (t) = Py, Ly(w) + €A% = ¢, Li(y2) = 0, L, (yp) = 0 (6)
1—n 8
umr=w=y,=y,=0 Aw—--—p—l%—() on 0Q
where 4/6n is a derviative along the upper normal, p is the radius of curvature of the contour
9Q,~v 1is a positive constant and A is the Laplace operator.
We shall call the generalized solution of problem (&) the vector O = (Ugy Uy Wes Vo Vye)
satisfying the integral identity
L 4y — (L (v ). 42) + (La (), ¥a) + (Ly (), ¥s) - {7)
+ aiu. 52
= ! N A ) ¢ 6%
<L‘°“yr"“”*‘5} (s =20 -9 (523 2 -
S
1wy gy, 1 0w gryg \
T o T —,;y—z'—d—;—)) Q= SS (P + P e+ qxs) 49,
d
YYo= (41, ¥o. V3. ¥a §) = Ho
Theorem 1. Let
kotzow) koxow), Polzp). Potzoy gizoy). Aglzoy), &
CU(Ly‘,. Dz..,-(:r,yt i\'? z.y)e Ly ()
=P >0 2 —f >0 2—20 >0 22 —28,>0
Then: 1) for any e2>0 there exists at least cne vecter w = (uS, 1% w.7v," ¥, satisfy-

ing the identity (7); 2! the approximate sclution of problem (6! can be found with the aid of
the BG method in the form (the summation over repeated indices is carried out from 1 to nj

= ey, vl Dby w = Deptap Ve = D&l Ve = e, @

where ({y, (z.u)}. {7;lz.v)} are the basis systems in W2(n AW 1(Q and W, (Q), respectively. Also
v v e e e T Weakly in W@ w e w, weakly in IT(Q) TWL (@) and strongly in
W Q).

Proof. We will obtain the approximate sclution of problem (€) -using the BG procedure,
determining the coefficients in (89) from the following system of eqguations:

™) a) — Lot Moa) + e ) ) + L (05 1) + (10,
a0 Cons Mt 9%y,
AL L 53 Su ity T 20— ) ( 9z 6y Oz du
Q

"

1 0w du” 1 Gy Py, ) \ .
T e o T T T Tam ) )et= gS Pty Pyt; +
! Q
1049 Lk L p=1,2,...n

The solvability of the syster follows from the lemma "on the acute angle” /8/. Indeed,
let us introduce, as in /§/, the mapping P (€)= (L, (C), Ly (C), L3 (C), L (C), L, (C)): R— R where R = [("],
cr is a Banach space of continuous functions of n variables. The continuity of the mapping
Lj{€)(=1,2.....,5 is obvious (the continuity of the non-linear terms follows from the com-~
pactness of the inclusion W/} (2 into W,;*(Q). We shall show that the "acute angle" condition
holds. To do this we multiply every eguation of system (10) by the corresponding factor
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a;, bj. c;, di, ep NG Sum over i,j,k,1,p from 1 to n

(P (C),0) >| VCu fnl'I F + llfzrt_z "'22'l |2 + 'l/a:fn" lz + i]/ﬁ;; 7‘11" |2+ (11)

2

_ aw
WPy T+ | v (e 22 ) [+

. n 2
’1/ An (v;‘z + a:—;) +2(Cuen" ") + 2 (D™ ") +
2 (Kpywn™ e1™) + 2 Ky ent™) + 2 (Kya™, )+ 2 (Ko™, £22") +
2 (Ko™, e1™) + ¢ | Ve, [Bpaiay — (P 2™ + (P v +
(9. w™), c¢=const>0

where &,", &,", 6,7, %" %", %," are obtained from gy, £, €12, %, % %2 DY replacing the vector o=
(u, v, w, ¥, 7y) DY the vector @ = (u", g™ W™ ¥ae™ Vye')-

The definition of the coefficients Cy;, Dy /2/ and condition (6) together imply that C,, —
C>a)/2, D, ~Dyy>a,/2 (.=1,2). Using the Cauchy inequality with «&» /7/ and the Cauchy-
Bunyakovskii inequality /7/ for the last term in (11), we have

P, 0> (%‘- - 2%) (Jen™ o+ o™ 19) + (o — Bo) [ " P (12)

(55— 28) (1™ b+ D™ 1)+ (e — B o™ P

du 2 ouw 2 - an
ar |V + 5| Vet THy +e|Vew e —
(P el +iP, e I+ 1gluw])

Thus when |C| is sufficiently large and the condition of Theorem 1l is taken irto account,
the acute angle condition holds (P ((). ()>0. This allows us to assert that system (10) has a
sclution, and enables us to write the following a priori estimates for the set of approximate

solutions:

[ o <&l ln < [Vew < (13)

[ireln <6 Iipeln <efy ¢ =const >0

Using the estimates (13} and the theorem on the compactness of the inclusion W (Q) into
W,? (Q), we carry out in the well-known manner /4, 5/ the passage to the limit from n in (1o},
and this completes the procf of the thecrem.

The theorem which follows shows in what sense the sclution of (6) approximates the sclution
of (1).

Thecrem 2. Let the conditions of Theorem 1 hclé. Then, as ¢--0, a subsequence fug. v,

i q e
We ¥xpr Yo CaR be found which converges tc the solution o = (', . v’ 9" 77 of problem (1; in
the following sense: u, — uf, ry— "o 3y, — ¥ ¥, - 0 weakly in By (@), v, —w® weakly in RiNToTe

Wyl (Q) and u, — v’ strongly in Wyt

Proof. We ncte that we can obtain from (13) estimates for the approximate solutions of
problem (6) by passing to the limit in n. The presence of these estimates enakbles us to
chocse a subseguence {w,} = {up, Iy Uee Yy T,e) WEAK1lY convergent in H,. This justifies, togetheu
witn the Scbolev inclusion theorems, the possibility of a passage tc the limit as +— 0 in
the integral identity (5) after the preliminary closure of the set ({y)= H, on the norm of H,.

Notes. lo. Condition {8) will always hold in Thecrem 1 for the layers cf constant thickness,
whether they are symmetrically or arbitrarily distributed, prcvided that the coordinate surface
/2/ is chosern appropriately, and in the case of layers of variable thickness conditicn (8}
holds, in particular, when the layers are distributed symmetrically about the coordinate
surface :=0.

20. We can consider, as the auxiliary problem (6), the problem in which the biharmonic
operator is replaced by an arbitrary, positive definite operator T with natural boundary
conditions, whcose energy spaceis imbedded compactly in W2 (Q) W, (Q). We note that the
freedom in the choice of the cperatcr T enakbles us "to construct", in a known sense, the
properties of the resulting algebraic system in the BG methcd in crder to increase the com-
putational efficiency of the algorithm used.

The introduction of the auxiliary prcblem (6) makes is possible to obtain strong con-
vergence of some sequence of approximate soluticns w,® to the exact solution u°, which is

important from the point of view of the practical realization of the algorithm. A similar
result can be obtained also for the other functions sought u, v, ¥y ¥y, provided that we complement
the expressions L, (u), L, ("), Ly (yx), L, (y,) in systems (6) with terms of the form g, Tu, €Taw, €37 45,
¢Tsvy . respectively, where ;>0 (i=1.2,3 4).7; are positive definite operators with natural
boundary conditions whose energy space is imbedded compactly in W2 (Q) N W, Q). Clearly, by
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choosing the operators T, 7; appropriately, we can obtain practically any degree of convergence
of the subsequence of approximate solutions to the exact solution without imposing any additional
constraints on the initial data of problem (1).

3°. A proof analogous to the one given above holds for other boundary vlaues (e.g. when
the character of the boundary condition varies along the contour /9/), naturally, when the
boundary conditions for the Timoshenko-type model are transferred appropriately.
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